

Variability of Monthly Diurnal Cycle Composites of TOA Radiative Fluxes in the Tropics

Patrick Taylor
NASA Langley Research Center
Climate Science Branch
CERES STM
May 9, 2013

Motivation

- The diurnal cycle is a fundamental earth system variability.
- Significant diurnal cycle signals are evident in many geophysical datasets, including temperature, water vapor, clouds, radiation, and convective precipitation (e.g., Minnis and Harrison 1984a,b,c; Randall et al. 1991; Janowiak et al. 1994; Bergman and Salby 1996; Lin et al. 2000; Soden 2000; Yang and Slingo 2001).
- The diurnal cycle is traditionally thought to be the result of a long time average removing "weather noise."

Background: Diurnal Cycle Regimes

•Convective and non-convective regimes are determined using climatological High Cloud amount (e.g., Bergman and Salby 1996).

Convective:High cloud > 10 %Non-Convective:High cloud < 10 %

Traditional diurnal cycle regimes provide a statistically robust categorization.

Main Points

- Point 1: The TOA flux (and cloud) diurnal cycle is variable.
- Point 2: Diurnal cycle variability in TOA flux is driven by clouds.
- Point 3: Neglecting this variability leads to uncertainty and bias.
- Point 4: Variability in the diurnal cycle is related to variability in atmospheric dynamic and thermodynamic state.

Diurnal cycle variability defined

The monthly, 3-hour composite of a variable differs from month-to-month outside of the random, statistical variations.

Data

CERES SYN Ed2rev1:

- Synergistically combines CERES and GEO observations to create a 3-hourly data product by using GEO radiances to obtain diurnal shape and CERES for radiometric accuracy:
- (1) A calibration of each GEO instrument with MODIS imager data
- (2) A narrowband radiance to broadband radiance conversion
- (3) An integration of GEO broadband radiance to irradiance
- (4) A normalization of GEO derived flux to observed CERES flux.

NASA

Method: Diurnal Harmonic

- CERES Synoptic Data
 - 3-hourly CERES-Geo merged data product.
- Fourier analysis is used to compute diurnal harmonics.

$$X'(t) = A\cos(\frac{2\pi t}{24hrs} - \phi)$$

OLR Diurnal cycle variability

NASA

STDEV(Amplitude) (unit: W m⁻²)

STDEV(Phase) (unit: hour)

- Fourier harmonic analysis is used by fitting a cosine function to monthly, 3-hourly composites of OLR, LWCF, and OLRCLR.
- The seasonal cycle of the monthly data set is removed and the STDEV is shown here to represent diurnal cycle variability.

Alternative diurnal cycle variability metric (RMS)

- Because of the RSW structure, a Fourier first harmonic fit does not characterize the diurnal cycle well.
- Therefore, an alternative method is developed to characterize RSW diurnal cycle variability.

Harmonic vs. RMS Method: OLR

- These plots present a comparison between the harmonic and RMS diurnal cycle metrics.
- The same regions are highlighted in both the harmonic and RMS methods.
- The main point here is that the RMS method cannot distinguish between amplitude and phase contributions.

RSW diurnal cycle variability: RMS_{RSW}

- The RSW diurnal cycle is highly variable in regions of oceanic convection and moderately variable over land convective and ocean non-convective regions.
- The variability is very small over land nonconvective regions.
- The diurnal cycle variability in the RSW diurnal cycle is entirely due to clouds.

Assessing uncertainty from neglecting diurnal cycle variability: TOA flux

(1) Create a simulated data set with diurnal cycle variability removed.

$$OLR_{sim}(m,h) = OLR(m,h_{obs}) * \frac{OLR_{clim}(m,h)}{OLR_{clim}(m,h_{obs})}$$

(2) Compare against "truth" data set (CERES SYN Ed2rev1)

$$OLR_{unc} = \sqrt{\frac{1}{N} \sum_{m=1}^{N} (OLR_{sim}(m) - OLR_{obs}(m))^2}$$

Neglecting Diurnal Cycle Variability Uncertainty

Uncertainty in monthly mean OLR and RSW fluxes ranges from 1-7 Wm⁻² across the tropics (Taylor 2013, submitted).

Neglecting Diurnal Cycle Variability OLR Bias

Systematic bias ranges from +5 to -5 W m⁻² when sorted by magnitude of OLR' (Taylor 2013, submitted).

Neglecting Diurnal Cycle Variability RSW Bias

 $RSW' > +1\sigma$

 $RSW' < -1\sigma$

Similar to OLR, systematic bias ranges from +5 to -5 W m⁻² when sorted by magnitude of RSW'.

Regional Behavior of OLR and RSW bias

Shown is the regional difference between OLR_{sim} and OLR_{obs} and RSW_{sim} and RSW_{obs} sorted by monthly OLR and RSW anomaly, respectively.

Neglecting Diurnal Cycle Variability Uncertainty—Two Observations

RSW

Uncertainty in monthly mean OLR and RSW fluxes changes from 1-7 Wm⁻² to 1-5 Wm⁻² (Taylor 2013, submitted).

Low cloud diurnal cycle: Sensitivity to LTS **Local Noon Local Noon** Namibian MSc Cali. MSc 5 10 15 20 10 15 UTC **UTC** Peru MSc $W \, m^{-2}$ Solid: LTS' > 0 Dashed: LTS' < 0 Local Noon 5 15 20 **UTC**

Main Points

- Point 1: The TOA flux (and cloud) diurnal cycle is variable.
- Point 2: Diurnal cycle variability in TOA flux is driven by clouds.
- Point 3: Neglecting this variability leads to uncertainty and bias.
- Point 4: Variability in the diurnal cycle is related to variability in atmospheric dynamic and thermodynamic state.

OLR_{err} and RSW_{err} sorted by atmospheric thermodynamic state

Shown is the regional difference between OLR_{sim} and OLR_{obs} and RSW_{sim} and RSW_{obs} sorted by the monthly THETA_{E.SFC} anomaly.

OLR_{err} and RSW_{err} sorted by atmospheric dynamic state

Shown is the regional difference between OLR_{sim} and OLR_{obs} and RSW_{sim} and RSW_{obs} sorted by the monthly ω_{500} anomaly.

Reanalysis diurnal cycle bias: OLR amplitude

 Shown are the differences between the climatological OLR diurnal cycle amplitude from ERA-Interim and MERRA with CERES observations.

- that over land the reanalysis data sets significantly underestimate the OLR diurnal cycle amplitude.
- This error is mostly drive my a weak LWCF diurnal cycle amplitude.

Reanalysis diurnal cycle bias: LWCF amplitude

ERA-Interim

 Shown are the differences between the climatological LWCF diurnal cycle amplitude from ERA-Interim and MERRA with CERES observations.

ニロススト

Harmonic vs. RMS Method: LWCF

 Same as previous but for LWCF.

 The main point here is that the RMS method cannot distinguish between amplitude and phase contributions.

South America Convective Region High Clouds

High cloud fraction diurnal cycle amplitude and phase show a sensitivity to CAPE and ω_{500} anomalies.

South America Convective Region Low Clouds

Low cloud fraction diurnal cycle amplitude and phase show a sensitivity to CAPE and ω_{500} anomalies.